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Abstract. This paper deals with the modelling of solidifying two-phase alloys and is primarily concerned with 
aspects of phase conversion. It briefly reviews existing theories and shows, by considering mass conservation and 
dissipation, how modelling proceeds when there is a clearly identifiable dominant rate process associated with the 
phase change. 

1. Introduction 

Interest in the quantitative modelling of solidifying alloys has increased significantly during 
the past few years. This may be explained in part by the perennial interest of metallurgists 
and geologists in the solidification process, but it is also due to the increasing precision of 
related experiments. What these experiments have confirmed is that solidification is often a 
complicated but delicate balance between various rate and diffusion processes. This balance 
is such that, for a wide range of parameters, there frequently occurs a mixed-phase region 
in which solid and liquid coexist over finite-sized volumes. In general there are two types of  
such regions, the slurry and the mush. The former term is used to describe the case when the 
solid is in the form of fine particles in suspension, free to ascend or sediment according to 
their buoyancy. By contrast the solid in the mushy zone grows as a porous network of 
crystals or dendrites through which the liquid percolates. 

Because of  the intrinsic complexity and the need to get a workable theory, the various 
models that have been proposed for these two-phase regions have all made simplifying 
assumptions as to the dominant processes and, as a result, the literature contains a whole 
family of theories. One purpose of  this paper is to review briefly the concepts that underly 
the formulation of these theories and so highlight the common aspects and to elucidate the 
inter-relationships. 

Fundamental to the dynamics of  solidification is the equilibrium phase diagram for the 
particular system under consideration. We shall have in mind a situation such as that shown 
in Fig. 1 which, for constant pressure, p, plots the mass concentration, 4, of the "light" 
component of an alloy against temperature, T. For a point above OL, the liquidus, the 
material is wholly liquid, while below OS, the solidus, the material is totally solid. We may 
visualize a fluid alloy of uniform composition G0 which is progressively but slowly chilled. 
The point on Fig. 1 representing the state of  the alloy descends along ALo and the alloy starts 
to freeze at T = To, corresponding to the point L 0 on the liquidus. The solid that starts to 
form has the composition appropriate to So in Fig. 1. A solidification front then acts as a 
source of both rejected material and latent heat and for a dynamic system, when the diffusion 
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Fig. 1. A typical equilibrhtrn phase diagram for a binary alloy showing the plot of  temperature against concen- 
tration of  the light constituent of  the alloy for a fixed pressure P0. The liquidus and solidus are respectively OL 
and OS and the region between these curves corresponds to a phase mixture that is either a slurry or a mushy zone. 

(and convection) processes in the system cannot adequately disperse these sources, a mixed- 
phase region will occur. 

All the existing models of the mixed-phase region have a common starting point, mixture 
theory. The idea is that, although on the microscale of crystal dimensions, the mass fraction 
of solid, 4,, is discretely 0 or 1, it should be possible, when the gross macroscopic behaviour 
of a region is sought, to consider only an average, smoothly varying ~b(x) that can take any 
value in [0, 1]. In contrast to many mixture theories, a region of mixed phase is 'reactive', 
that is melting and freezing can change the amount of each of the components of the mixture 
(solid and liquid) present. Clearly, underlying a binary-alloy phase mixture there is a 
four-component mixture theory with densities 0 s, 0 s, 01 L, 0~ and associated velocity fields 
v s, v s, Vl L, v2 L . (We shall employ the superscript S, L for solid and liquid and the subscript 
l, 2 to denote light and heavy constituent of  the alloy respectively.) The associated com- 
plexity of such an approach is obvious and would almost certainly result in an intractable 
theory. But, for the case of a single-phase melt, the simpler diffusive mixture theory of 
Landau and Lifshitz ([I], Chapter VI) has been successfully applied. This approach is 
founded on total quantities (energy, stress, etc.) and the mass centred (barycentric) velocity 
field, v L, where 

O~v L Q~v~+ L L OL = = + ( 1 . 1 )  
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In this theory, the governing equations for momentum and energy have the same form as 
for a single-component material. In essence, the two-constituent nature of the melt is 
encapsulated in an additional equation for the evolution of  ~z, the mass concentration of  the 
light constituent, and which involves a flux vector, i. This equation is motivated by the 
conservation of  the mass of  the light constituent and allows us to relate i to the relative 
velocity v~ - v~. From the separate constitutive postulate for i, with major contribution 
-QLDV~L, it is thereby possible to determine completely the motion of  one constituent 
relative to the other. The diffusive theory is considerably easier to use than a general mixture 
theory but it can only be employed when there is no explicit constitutive dependence on 
relative velocities. 

The central issue of  the mixed-phase region is the approach to equilibrium. To be tenable, 
the mixture theory must predict that any closed system will equilibrate to a maximum 
entropy solution in which the temperature T and pressure p are constants and in which the 
mass fractions ~s and ~L of  the light component in the solid and liquid phases are those 
appropriate to complete thermodynamic equilibrium, that is the solidus and liquidus 
composition 

~s = iS(p ,  T) ,  ~L = ~Z(p, T).  (1.2) 

(We shall use an overbar to denote an off-equilibrium value.) It is also essential that, in this 
state, ~b(x) can take any value between 0 and 1 independently for each point x. This is already 
a potent restriction on the class of  admissible theories; there is no place for a Fickian-type 
diffusion contribution, -~V~b, that would cause q~ also to become uniform in equilibrium 
(see Hills and Roberts [2]). 

A system which is not in equilibrium will generally try to regain that state by melting or 
freezing material. For definiteness, we shall concentrate on freezing and then we have to be 
concerned not only with the rate at which solid phase is formed, m s , but also with the rate 
at which the light constituent enters the solid phase, m s . Encapsulated in these rates are all 
the complexities and delicate balances of  the solidification process itself and, therefore, 
we can only expect to make significant progress when we are able to identify dominant 
processes. For example, in Section 3 we consider what is sometimes called a para-equilibrium 
state in which the system is essentially in equilibrium with respect to one of  the constituents 
but not with respect to the other. Then, the conversion rate associated with this former 
constituent proceeds, in effect, infinitely fast. Recognition of  a dominant process enables us 
to identify certain characteristic physical rates that are usually combinations of  the rates m s 
and m s. The next step is to specify the nature of the "intrinsic driving force" for these 
characteristic rates. Recall that in equilibrium, the chemical potentials of  each ingredient of  
the alloy are equal, 

/2 s = /Sf, ~ = /~, (1.3) 

where/~(p,  T, ~ )  is the chemical potential per unit mass of  constituent a ( =  1, 2) in phase 
( =  S, L). Equations (1.2) result from (1.3) by solving for ~L and ~s as functions o f p  and 

T. Thus we might reasonably expect that the characteristic rates are "driven by" chemical 
potential differences but the exact specification of  these differences again is intimately linked 
to the nature of the dominant process as we show in Section 3. While in principle, perhaps, 
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all theories should follow as special cases of  a universal theory, the complexity of  such a 
theory which must embrace so many effects precludes the general approach and invites 
exploitation of  the special. 

The specification of  the characteristic rates such as m s and m s is generally one of  the more 
challenging aspects of  any theory but in one limit, the fast-melting approximation, this 
difficulty is avoided. This approximation was employed by Loper and Roberts [3] and Hills, 
Loper and Roberts [4] who supposed that phase equilibrium is established so rapidly, 
compared with the rate at which the mixed-phase region evolves, that with negligible error, 
(1.2) can be assumed to hold throughout the process. In Section 3, we show how fast melting 
can be recovered as the result of  allowing rate coefficients to tend to infinity but with the 
associated dissipation vanishing. 

Fast melting appears tenable provided the solid grains of  the slurry or mush are so small 
that all diffusion processes are effectively instantaneous. Were this not true of the diffusion 
of  heat, it would be unrealistic to assume a common mean temperature for the solid and 
liquid phases. But, since the diffusion of  chemical species in a solid is so slow compared with 
that of  heat, the grains of  solid may well not be in chemical equilibrium with the surrounding 
fluid even though both are at the same temperature, T. In such cases the fast-melting 
approximation cannot be expected to perform well and consideration will have to be given 
to explicitly detailing the nature of  the characteristic rate process. 

As a halfway house between the fast-melting approximation and a fully general theory, 
we might suppose that one of  the two rate processes, that bring about (1.2) when the two 
conditions (1.3) are not satisfied, proceeds rapidly compared with the other. There are then 
two timescales associated with chemical equilibration, one (~s) short, and the other (zl) long. 
In a time of  order zs, an initial state will evolve into a state of  para-equilibrium in which, 
in a rough sense to be described more precisely later, one of (1.3) is satisfied and the other 
is not; the final evolution of  an isolated system to a state (1.2) where both of  (1.3) are obeyed 
then proceeds very slowly, on the z~ timescale. 

In trying to model solutions of  this type one must first decide which of  the two phases of 
evolution one wishes to study in detail. If  one seeks to follow the system on the Zl timescale, 
one must set zs = 0 so collapsing the transition to para-equilibrium to a single instant. 
Thereafter, in the same rough sense as before, one of (1.3) is continually satisfied and, after 
a time of order Zl, the other is also obeyed (assuming the system is isolated). Theories of this 
type, which can follow a system from para-equilibrium to complete equilibrium, are studied 
in Section 3(d) below. 

If at the other extreme one wishes to follow the system during the time it attains 
para-equilibrium, one sets z~ --- ov from the outset, and abandons all hope of  monitoring 
the approach of  an isolated system to complete equilibrium. Recently Hills and Roberts 
[5] have developed such a theory for a solidifying phase mixture; see Section 3(b) below. 
To elucidate the underlying physical process, they visualized each grain in the slurry or 
mush as an onion whose innermost core has the composition corresponding to So of  Fig. 1. 
The outer layers are successively richer in light constituent since, as T decreases, the 
new material laid down on the surface will have a composition corresponding to a point 
on Fig. 1 that continually moves to the right along So S~. It is clear that the mean ~s 
used in the mixture theory will be lower than the grain surface value because of  this 
onion-like structure. In Section 3, we identify the important relative rate that characterizes 
the theory of  [5]. 
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The above discussion also serves to illuminate the differences between solidification and 
melting. For solidification, it is only because we follow the growth of  a grain from the 
initiation of  freezing that we can, in principle, monitor the average ~s. The melting of grains 
is clearly much more complex since it is necessary to have a knowledge of the history of  the 
grain to understand the manner in which successive layers of the onion are stripped off. 
Identification of  the dominant rates and driving forces is obviously much more difficult when 
hereditary effects are involved and we do not pursue this here, instead concentrating on the 
more tractable problem of freezing. 

2 .  M a s s  c o n s e r v a t i o n  a n d  e n t r o p y  p r o d u c t i o n  

The solid and liquid alloys are always separately modelled by diffusive mixture theory but 
the treatment of  the two-phase region depends upon its nature. When this is a slurry it is 
possible to use a diffusive mixture theory for the two-phase region also. The total momentum 
balance determines the evolution of  the barycentric velocity v and, as we shall see, the relative 
barycentric velocity w (see eq. (2.4)) between the phases is determined from constitutive 
postulates. The underlying structure of  the solid phase in a mush means that the diffusive 
formulation is inappropriate (see Hills, Loper and Roberts [4], Appendix 1). Usually, the 
solid structure is assumed to be rigid and therefore all the linear momentum considerations 
centre on the momentum balance for the liquid phase alone. The velocity w is then an 
independent variable, and the mush is modelled by a general mixture of  two diffusive 
mixtures. The details of  many of the various theories we consider have appeared elsewhere 
and will not, therefore, be our concern. Accordingly we shall totally ignore the concepts of  
momentum and energy conservation and instead concentrate on the expression of  mass 
conservation and entropy production. 

If  we denote the partial densities for the light and heavy constituents for each phase by 
O s, 0 s, 0~, Of then the total density fields are given by 

0 s = Of + 0~, 0 L = Of + Of, 0 = 0 s + 0 L, (2.1) 

and the mass concentrations by 

~s = Of/os, ~L = Of/OL, ~ = os/o. (2.2) 

The barycentric velocities for solid, liquid and mixed phases as a whole are 

v s = ~ s~  + (1 - ~s)~,  v L = ~/-v~ + (1 - ~L)v~, 

v = ~vS + (1 - $)v L, (2.3) 

with the relative velocity, w, being defined as 

w = v L - -  v s . ( 2 . 4 )  
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We denote the rate at which solid is created by m s while, within the solid phase itself, the 
rate at which light consti tuent appears is ~ where 

m s = Ore s + V ' ( Q S v S ) ,  m s = 0tQ1 s + V" (eSvS). (2.5) 

Here 0t denotes the Eulerian derivative and we employ direct vector notat ion wherever 
possible. Similar quantities are defined for the liquid phase. By considering a unit volume 
within the phase mixture we find that, if ~ t  denotes the mass concentrat ion of  the light 
consti tuent o f  the mixture as a whole, then 

~M = ~b~s + (1 - ~b)~ '~. (2 .6)  

The total mass of  the phase mixture and the total mass of  the light component  are separately 
conserved and this leads to 

m s + m L = 0, m s + m~ = 0. (2.7) 

The usual development  of  diffusive theories suggests that  we should reformulate the 
definitions (2.5) and equations (2.7) in terms o f  the material derivative D / D t  ( =  ~, + v .  V)  

based on the barycentric velocity v. F rom (2.5)1 we find 

oD(a/Ot  = m s -  V ' j ,  j = -Qq~(1 - ~b)w, (2.8) 

which can be used to recast (2.5)2 as 

odpD~S/Dt = m s -  ~ S m S _  j . V ~  s -  V . h o ,  

ho = Qs~s(1 _ ~ s ) ( ~  _ vS). (2.9) 

Equat ion (2.7)1 becomes the usual equat ion for the total density O, 

DQ/Dt  + QV-v  = 0, (2.10) 

but, f rom (2.7)2, we have 

QD~M/Dt = - V . i ,  

i = Odp~S(v s - v s)  + 0(1 - ~b)~Z(v~ - v L) + e~b(1 - q~)(~L _ ~S)w" (2.11) 

Using (2.6), we deduce 

D~ s D~ L D 0  - V" i. (2.12) 
Q 4 ~  + 0(1 - cb) ~ + ( ~ s _  ~L)O D t  = 

Equations (2.8)-(2.12) are tautological consequences of  the defmitions (2.5, 6) and con- 
servation laws (2.7). Equat ion  (2.10) is well unders tood and so, henceforth, we shall ignore 
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it and concentrate on the remaining set. The approach of diffusive theory is to change the 
status of  some of these equations by postulating constitutive equations for some (or all) of  
the vectors i, j, !i0. For example, if a constitutive equation is given for i10, then the actual 
velocities s s v~, v2 of  the solid need not explicitly enter the theory but, once a particular problem 
is solved, the fields v s, v~ can be found using the determined h0, the barycentric velocity v s 
and (2.9)2. As we shall see, the choice of which of the equations are to have their status 
changed crucially influences the resulting theory. 

Next we consider the restrictions imposed by a postulate of  entropy growth. The correct 
form is given in Hills, Loper and Roberts [4, equation 2.11], viz: 

( D ~  D T  
- e  - f f F  + S D---; - - - -  

I DQ p DQ) 
o D t  + - ~ - ~  + T V  " k - V " q - g " w + oS: DS + trL: DL >~ O. 

(2.13) 

Here, �9 is the total Gibbs free energy for the phase mixture and S the entropy, both 
measured per unit mass; p is the pressure; k, q are the flux of entropy and heat; g is a diffusive 
force that acts between the phases; and aS,/)~ are the stress and rate of deformation tensors. 
The inequality (2.13) is appropriate to the case of a general mixture of two diffusive phases. 
For the case of a diffusive mixture in a slurry the last three terms are simply replaced by the 
total stress power. This distinction will affect the details but not the general conclusion of 
this paper. 

An important consideration is that, since we are discussing a phase mixture of the same 
material, the free energy must satisfy the lever rule between the partial energies of each phase, 
viz: 

= ~b~(p, T, ~s) + (1 - ~b)cI~(p, T, ~L). (2.14) 

Since ~b(x) can take any value in equilibrium, equation (2.14) expresses the energetic 
indifference of  how much of  each phase is present in a slurry/mush. 

3. Discussion of theories 

We are now in a position to illuminate some of the underlying concepts and their implemen- 
tation for existing theories and to go further by suggesting ways in which new theories may 
be constructed to model physical situations. 

(a) The completely-fast-melting theory o f  a mush 

The fast-melting theory of Hills, Loper and Roberts [4] assumes that ~s, ~L lie on the phase 
curves so that these concentrations are completely determined within the mush from the 
pressure and temperature fields. The field ~b(x) remains as the only unknown concentration. 
In view of (2.6) and (1.2) a completely equivalent variable is ~u. In [4], ~M was adopted as 
the primitive variable; its evolution is governed by (2.11) with a constitutive postulate for i. 
For a mush, the relative velocity w is an independent variable and the model was constructed 
employing a general mixture theory. Since ~s, ~/. lie on the phase curves, equations (2.8), 
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(2.9), (2.12) are no longer necessary (see discussion in sub-section (d)). It is equally straight- 
forward to derive a theory based on @ rather than ~M but using (2.12) instead of  (2.11)1. The 
first two terms on the left-hand side of  (2.12) are of  course known in view of (1.2), and again 
(2.9), (2.11) and, interestingly, (2.8) are discarded. In either approach it is not necessary to 
postulate for the rates m s, mS: they are determinable immediately from ~b using definitions 
(2.5). Although equation (2.9) was not needed in [4], it was nevertheless tacitly assumed that 
h0 = 0 so that v s = v2 s = v s and the solid phase effectively has no mechanism to even 
out differences in chemical composition caused by the solidification process. Thus h0 = 0 
and the fast-melting approximation are strictly incompatible assumptions except possibly in 
the idealized case when ~s = 0 and solidification always produces pure material. This 
observation led to the development of  the theory of  the next sub-section. 

(b) The generalized Scheil-Pfann theory 

The fundamental assumption of  this theory is that the diffusion and convection properties 
of  the liquid are sufficiently rapid that the concentration of  the liquid ~L remains on the 
liquidus but by contrast the solid composition ~s moves away from the phase curve. 
The lethargic material diffusion processes within the solid are unable to even out the 
onion-structure discussed in the introduction. Although the material that freezes onto a 
grain has the composition given by the solidus, the mean value of  ~s (which is the variable 
of  the mixture theory) will be less than this surface value due to the smaller ~s in the interior. 
Recognition that, in static conditions, the material always solidifies with the solidus 
composition, clearly identifies the combination M - m s - ~SmS as important and suggests 
that (2.9) be recast as 

D~ s Dq~ 
Oc~ Di = ( ~ s _  ~s)o__ ~ + oq~( 1 _ ~b)w.V~ s -  V - h  + M, 

h - !1o + 0@(I -- qb)(r s -- ~S)w. 

This equation forms the foundation of  the theory of  [5]. The evolution of ~b is governed 
by (2.12) which is, in essence, a generalized Scheil-Pfann equation.* The entropy inequality 
suggested that, at least in static conditions, the "driving potential" for M was 

Z = El L - ~Sl-l[(I~S - tic + ~S(~L _ ~s)], (3.1) 

and that then M = -- A Z, with A proportional to a relaxation rate. (There is also a further 
dynamic contribution to M proportional to w .  VX. The need for this term stems from 
equilibrium considerations.) In complete thermodynamic equilibrium, while the field ~b 
can be nonuniform, the pressure and temperature will be constant across the system and 
hence, by (1.2), so will be the light constituent concentrations ~s and ~L. But, if diffusion 
process within the solid are slow, an astronomically long time may elapse before this 
maximum entropy state is reached. On a more practical timescale the system will attain a 

* A related but ad-hoc attempt to incorporate a Scheil-Pfann type equation into a dynamic theory was made by 
Fowler [6] but without any discussion of  the aspects of thermodynamic dissipation. 
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"quasi-equilibrium" state in which the temperature field is uniform but ~s (and the pressure 
distribution) are not. In other words, on the timescales of the laboratory, the diffusion- 
less solid should be able to sustain differences in chemical composition (and associated 
non-uniformities in the pressure field) without any discernible dissipation or tendency to 
change. Attention was focussed on quasi-equilibrium by arranging that h0 and M are 
identically zero. 

(c) Fully non-equil ibrium theory f o r  a slurry 

The earliest dynamic theory of a two-phase region given by Loper and Roberts [3] tackled 
the physically more complex situation of non-equilibrium conditions but, since the dis- 
cussion was of a slurry, a diffusive theory for the phase mixture was used. Constitutive 
equations were presented for the fluxes i and j and again it was assumed that in the solid there 
was no relative motion so that the flux h 0 vanished. The relative velocity w entered the theory 
as a dependent variable via (2.8):, and (2.8)1 became the evolution equation for the mass 
concentration 4). The light constituent concentrations ~s, ~L were given equal status. The 
evolution of ~s was governed by (2.9) and the equation for ~L followed by using (2.8), (2.9) 
and (2.12), 

- -  = ~LmS -- m s -- ~ 'V"  j + V" (ho + ~sj _ i), (3.2) q(1 - 4)) Dt 

and then setting h 0 = 0. Later this theory was specialized using the fast-melting approxi- 
mation and, in view of  the assumption of  no solid diffusion, is therefore subject to the same 
criticism as that levelled in sub-section (a). 

(d) Non-equi l ibr ium dominant  rate theories 

In this final sub-section we consider the formation of theories in which ~L and ~s take 
non-equilibrium values but in which there are one or more dominant rate processes. As 
in the previous sub-section, ~s and ~L are treated on an equal footing but their evol- 
ution equations are intimately related to the dominant characteristic rate processes. In 
all cases, the evolution of the solid concentration, @, is determined by (2.8). We retain 
the expression (2.8)2 for the flux j rather than adopt the Loper and Roberts [3] approach 
of postulating for j and of using a diffusive two-phase theory. Employing the lever rule 
(2.14) and the equations (2.9) and (3.2),* we can express the entropy-growth postulate 
(2.13) as 

91 = - -#S{mS  1 -- ~SmS} -- #L{~LmS -- m s } -- ((I) s -- ( I~)m s + Q >1 O, (3.3) 

* At  this stage we  consider (2.9) and (3.2) as identities. The forms of  the evolution equations are determined as 
a result of the discussion to follow. 
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where 

Q = 

and 
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Dp D T  
--Oap f f i  -- Oar ~ -- /2sodp(1 - q~)w-V~ s + /2sv �9 ho 

-- /2LV" (ho -- i -- e~b(1 -- ~b)~Sw) + T V . k  - V - q  -- g . w  

_ (Os _ d~ + /2L~L)V. (O~b(1 - ~b)w) + as: D s + aL: D L, 

/2r - (? = S or L), 

~ s  O~ L 1 
~b--~-p + ( 1 - ~ b )  Op Q ' ae 

O0 s O ~  
aT = ~ b ~  + (1 - ~b)-~-  + S. 

(3.4) 

inequality becomes 

9 ~ -  ~ o +  Q ~> 0, 

with 

S ~ s  S ~S  fflo - -  - -  m l / 2 t  - -  m 2 / 2  2 _ m L / ] ~  _ m2L/22~L, 

S ~L  S ~L - -  m l  (/21 / ~ s )  + - m :  @ :  - -  

(3.6) 

(3.7) 

The expression (3.3) clearly shows that  constitutive equations are required not  only for the 
fluxes and stresses, but also for the rates m s and m s . Such equations should properly reflect 
the intrinsic time scales associated with the solidification process for a particular situation. 
There are various ways in which we might proceed, but  one particularly appealing course is 
to follow Gibbs [7] and introduce the chemical potential /~](p, T, ~]) per unit mass of  
constituent ct in phase y by the definitions 

= - ( 3 . 5 )  

The Gibbs -Duhem relationship, 

is a natural  consequence of  these definitions. In terms of  these variables, the entropy 
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since 

s L O, m~ + m~ m r m s + rr~ O. m ,  + m ,  = = , = 

Making the reasonable assumption that all fluxes and stresses will vanish in static 
condit ions with spatially-uniform independent  fields, we see that 

% >i o. (3.8) 

Restricting our at tention to linear constitutive relations, we may postulate 

m s = 2,~(/~ -- /is) + 2t2(fi~ _ /Ss), 

= 22~(/]~ - /]l s) + 2 2 2 ~  -- /is), (3.9) 

where, according to Onsager 's  symmetry principle, 

212 = 221- (3.10) 

F rom (3.7) and (3.9) we have 

~L 0 = ~ l l ( f i l  L - -  /]IS) 2 -F 22~2(~f -- /~f)(/~ -- /~S) + 222(/~ -- /~)2, (3.11) 

and (3.8) requires 

211 /> O, /~11~-22 >t 222. (3.12) 

The positivity of  the quadrat ic  form (3.11) tells us that  an isolated system will evolve 
towards  the maximum entropy state in which ~s, ~L achieve the form (1.2), since these phase 
curves result f rom solving (1.3). 

The arguments  given earlier, if correct, imply that the rate constants 2,a may  be very 
different in order of  magnitude,  and this invites us to simplify the theory by going to the 
extreme case when one or  more  of  the 2,p are infinite and the remainder are finite. As an 
example, we may  expose the fast-melting approximat ion by letting all the 2,~ be infinite. It 
then follows f rom (3.9) that (1.3) holds, i.e. t ha t / i f  - /is a n d / ~  - /5 s are zero, but  in such 
a manner  that the products  2,1(/~ - /is) and 2 ,2 (~  - m s) are finite in the limit - there  

is no sugges t i on  tha t  m s a n d  m s s h o u l d  be  ze ro  or infinite.  The actual values of  2,1 (/]~ - /is) 
and 2 ,2 (~  - /~s) are whatever  are necessary to maintain (1.3). Thus, the equat ions (2.9) 
and (3.2) are not adopted  for the determinat ion of  ~s and ~L, which are already known 
to be ~s and ~L: the equat ions have become indeterminate. Thus in the fast-melting 
theory (1.2) simply replaces (2.9), (3.2) and the entropy product ion rate, ~II 0, is zero in this 
limit. 

The next simplest possibility is suggested by a metallurgical example. It is found in the 
solidification of  Fe--C-M steels where carbon and molybdenum are mixed with iron, that the 
carbon moves freely between the two phases. In our binary alloy such a process would 
suggest a limited form of  the fast-melting approximat ion for consti tuent  1 (say), in which/~s, 
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/~ maintain an approximate equality.* Such a situation would be modelled by taking the 
limit 211 ~ ~ .  Then (1.3)1 would hold, and would replace (3.9)1 in the evolutionary theory 
with the entropy product ion rate 910 reducing to 222(~2 L - ~ )2 .  The variable m s is "down- 
graded" from requiring a constitutive equation to being determined f rom its definition (2.5)2. 
It is important  to realize that (1.2)1 does not  follow from (1.3)1; (1.3)~ does, however, imply 
a relationship (usually 1-1) between ~s and ~L for a givenp, T. In view of  the change of  status 
o f m  s, equation (2.9) no longer has relevance to the evolution equation for ~s. To obtain the 
requisite equation we reformulate the definition for m s in terms of  the barycentric velocity 
v a s  

D[~b(1 - ~s)] 
Q Dt  = V-[Q~b(1 - ~b)(1 - ~S)w] + V - h  0 + m s , (3.13) 

where h 0 is again given by (2.9)2. The form (3.13) no longer contains m s and so is appropriate 
for our purposes. The equation (3.2) is abandoned,  with ~L being determined from (1.3)t. 

An infinite number  o f  other such limiting theories is possible. To illustrate this, we cast 
(3.7), (3.9), (3.10) in matrix form by writing 

= t/rm = t/r21/, m = 2t/, 2 r = 2, (3.14) 

where r denotes transposed matrices and t/, m, 2 are defined by 

( r h )  ( ~  _ /~s~ (mS~ (21t 212) 

= ----- \ '~'21 222 r/2 \/7~ /~s] ' m = m~2j, 2 = 
(3.15) 

Corresponding to the new variable v, linearly related to ~/by 

q = Lv, d e t L  r 0, (3.16) 

we have 

9t o = vrn  = vrmv  >1 0, n = my, m r = m, (3.17) 

where 

n = Lrm,  m = Lr2L.  (3.18) 

Let us suppose that tn H - M, and consider the limit M ~ 00; evidently Vl = O(M -I)  --* 0 
in this limit. Effectively n2 = A v2 and 910 = A r where A = w22. 

Translating back to variables ~/, m, 2, we find the following. To leading order in M, the 
rank o f  2 is one, and for M --* ~ ,  

L22r]l - -  L12r/2 = 0, (3.19) 

* Metal lurgis ts  somet imes refer to this s i tuat ion as "pa ra -equ i l ib r ium" .  It is a similar, bu t  no t  identical,  concept  
to  the  quas i -equi l ibr ium in t roduced  in sub-sect ion (b). 
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A 
L12mS + L22mS = det L (L2~r/l - LHq2). (3.20) 

One of the governing equations that replace (2.9), (3.2) is 

L22(/~1 s -- /~1 L) - L12~ s -- /~) = 0, (3.21) 

and the other is obtained by reformulating (3.20) using the barycentric velocity v 

{ D(~b~ s ) D[q~(1 - ~s)] } 
O L12 D ~  + L22 Dt 

= (L22 -- L l : ) V . h  o + (LI2 + L22)V" (0~sq~(1 -- ~b)w) 

A 
det L [L2~(/]s -- /fit) -- Ll1(#2 s -- /~2L)] �9 (3.22) 

The particular case 

L = (3.23) 
1 Cs ' 

is interesting. In terms of the variables 

Or = ~r/~ + (1 - ~r)/~, #r = /~ _ /~, (3.24) 

that arise naturally in the dynamic theory, equations (3.19) and (3.20) are simply 

O s  _ ~ L  __ f t S ( ~ S  __ ~ S )  __ ~ t ( ~ S  __ ~L) = O, (3.25) 

m s _ ~SmS = A(fts _ ~z). (3.26) 

When A = ~ ,  (3.25-26) recover the fast-melting relations (1.3) leading to (1.2). It may 
be noticed that ~s and not ~s appears in (3.23) and (3.26). The idea, as adumbrated in Section 
1, is that when A = 0 the material that freezes onto the surface of  the grain has, according 
to (3.26), the solidus composition appropriate to the p, T at the time that the freezing takes 
place. Although by taking A -- 0 we have a physically reasonable way of adding solidus 
composition to the surface of the grain, equation (3.25), which can be thought of defining 
( t  for given ~s, p, T, will give a non-liquidus composition for the melt. One would have 
naturally expected, however, that the mobility of  eL in the liquid, being so much greater than 
that in the solid, would have maintained ~z. on LoLl in Fig. 1. The theory of  [5] shows that 
it is possible to formulate a theory that replaces (3.25) simply by 

~t = ~t (3.27) 
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and at the same time both maintains the positivity of 0t o and retains the property that 
material freezing on the surface of  a grain has the current solidus composition, although a 
slightly different driving potential, Z, (see eqn. (3.1)) replaces the one on the right-hand side 
of (3.26). 
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